Top menu

3D-печать органов человека или когда в AutoCAD начнут проектировать органы

Мы публикуем интервью В.А. Миронова, изобретателя технологии печати органов, запатентованной в США, и теперь развивающий это направление науки в московском проекте Инвитро.

3d-organs_01

Это из новой лаборатории 3D-печати органов. Спереди внушительный микроскоп, дальше видно двух медицинских инженеров за AutoCAD – делают макет площадки для формирования тканевых сфероидов. 

Тут недавно открылась лаборатория 3D-биопринтинга органов (проект Инвитро). Вокруг неё творится какая-то лютая феерия непонимания того, что именно делается. В общем, хоть я и не микробиолог, но мне стало интересно. Я пробился до разработчика — В.А. Миронова. Именно он изобрёл технологию печати органов и запатентовал это в США, участвовал в разработке уже трех модификаций биопринтеров, и именно он «главный по науке» в новой лаборатории в Москве:

3d-organs_02
В.А. Миронов (M.D., Ph.D., профессор с 20-летним опытом в микробиологии, в частности, на границе с IT) — в процессе полуторачасового объяснения мне сути технологии изрисовал кучу бумаги. 

В двух словах о печати он рассказать не смог, потому что сначала надо понять некоторую историю вопроса. Например, почему пришлось отбросить светлую идею растить эмбриона без головы в суррогатной матери, а затем вынимать из него почку и помещать её в биораставор для ускоренного созревания.

А пока главное. Не торопитесь пить всё что горит: до новой печени ещё очень далеко. Поехали.

Эволюция методов

Итак, сначала была генная терапия: пациенту вводились соответствующие комплексы. Выделялись определённые клетки, в них вводились нужные гены, затем клетки размещались в организме человека. Не хватало инсулина – вот ген, который продуцирует его создание. Берём клеточный комплекс, модифицируем, вкалываем пациенту. Идея – отличная, правда с одним коренным недостатком: пациент вылечивается сразу, и покупать после операции ничего не надо. То есть догадайтесь, кому это было поперёк горла. Дело шло сложно, а потом один из пациентов умер – и началась характерная для США волна судебных исков и запретов, в результате чего исследования пришлось свернуть. В итоге – метод есть, но толком не оттестирован.

Следующим трендом стала клеточная терапия — использование эмбриональных стволовых клеток. Метод отличный: берутся «универсальные» клетки, которые могут быть развиты до любых необходимых пациенту. Проблема в том, что чтобы их где-то получить, нужен эмбрион. Эмбрион в процессе получения клеток, очевидно, расходуется. А это уже морально-этическая проблема, которая вызвала запрет использования таких клеток.

Дальше — тканевая инженерия – это когда вы берёте основу, кладёте на неё клетки, засовываете всё это в биореактор, на выходе получаете результат (орган), который нужен пациенту. Как протез, только живой. Вот здесь важный момент: основное отличие от протеза в том, что протез изначально из неорганики, и вряд ли когда-нибудь встроится в организм «как родной». Деревянную ногу не почешешь.

Методы тканевой инженерии бывают каркасные – когда используется выщелоченный (обесклеченный) трупный орган, который затем «заселяется» клетками пациента. Другие научные группы пробовали работать со свиными белковыми каркасами органов (доноры-люди не нужны, зато во весь рост встаёт иммуносовместимость). Каркасы бывают искусственные – из разных материалов, некоторые научные группы экспериментировали даже с сахаром.

Сам Миронов практикует бескаркасную технологию (с использованием гидрогеля в качестве основы). В его методе основа-полимер быстро деградирует и в итоге остаётся только клеточный материал. Проще говоря, сначала вставляется каркас из неограники с размещёнными клетками, а затем каркас «растворяется», и его функции берут на себя сами клетки уже подросшего органа. Для каркасов используется тот же материал, что для хирургических швов: он легко и просто деградирует в организме человека.

Тут главный вопрос – почему нужна именно 3D-печать. Чтобы это понять, давайте закопаемся ещё чуть глубже в имеющиеся методы тканевой инженерии.

Приближаемся к цели

Вообще, идея вставлять в человека заранее выращенный органический орган – отличная. Посмотрим на три варианта развития технологии:

  1. Вы берёте каркас из неорганики, засеиваете его клетками – и получаете готовый орган. Метод грубый, но работающий. Именно про него речь в большинстве тех случаев, когда говорят «мы напечатали орган». Проблема в том, что где-то нужно взять «стройматериал» — сами клетки. А если они есть, то глупо использовать какой-то внешний каркас, когда есть возможность просто собрать орган из них. Но самая болезненная проблема – неполная эндотелизация. Например, для бронхов, сделанных так, уровень — около 70%. Это значит, что поверхностные сосуды тромбогенны – вылечивая пациента, вы сразу же привносите ему новую болезнь. Дальше он должен жить на гепарине или других препаратах, либо ждать, когда образуется тромб и эмболия. А здесь уже с нетерпением ждут юристы США, которые готовы отыграть по старому сценарию. И проблема эндотелизации пока не решена. Возможный вариант – выделение клеток-предшественников костного мозга с помощью мобилизации специальными препаратами и хомингом на органе, но это пока очень далёкая от практики фантазия.
  2. Второй метод крайне оригинален и очень радует своей циничностью. Берём клетку (фибробласт) пациента, добавляем 4 гена. Кладём полученную клетку в бластоцисту (зародыша животного) и начинаем выращивать зверушку. Получается, например, свинья с человеческой поджелудочной железой – так называемая химера. Орган полностью «родной», только вся инфраструктура вокруг – кровеносные сосуды, ткани и так далее – от свиньи. А они будут отторгаться. Но ничего. Мы берём свинью, вырезаем нужный орган (свинья при этом полностью расходуется), а затем убираем с помощью специальной обработки все свиные ткани – получается как бы органический каркас органа, который можно использовать для выращивания нового. Некоторые исследователи пошли дальше и предложили следующий лафхак: давайте заменим свинью на суррогатную мать. Тут как: кроме 4 генов в клетку добавляется ещё один, отвечающий за ацефалию (отсутствие головы). Нанимается суррогатная мать, которая вынашивает нашего общего друга-эмбриона. Он развивается без головы, у ацефалов это хорошо получается. Затем – УЗИ, выяснение, что ребёнок получается неполноценный, и юридически-разрешённый аборт. Нет головы – нет человека, значит, никого мы не убивали. И тут – раз! — у нас тут появился теоретически легальный биоматериал с неразвитым органами пациента. Быстро имплантируем их! Из очевидных минусов – ну, кроме моральной стороны – организационная сложность и возможные юридические осложнения в будущем.
  3. И, наконец, есть третий метод, про который и идёт речь. Он же самый современный — трёхмерная печать органов. И именно им занимаются в новой лаборатории. Смысл такой: не нужны неорганические каркасы (клетки сами себя прекрасно держат), не нужно у кого-то брать органы. Пациент отдаёт немного своей жировой ткани (есть у каждого, в ходе экспериментов жаловались только тощие японцы), из неё методом последовательной обработки клеток получаются необходимые конструкционные элементы. Создаётся трёхмерная модель органа, конвертируется в CAD-файл, затем этот отдаётся 3D-принтеру, который умеет печатать нашими клетками и понимает в какую точку трехмерного пространства ему нужно «уложить» конкретный тип клетки. На выходе – тканевый конструкт, который надо поместить в специальную среду, пока не начались проблемы с гипоксией. В биорекаторе тканевый конструкт «созревает». Потом орган можно «трансплантировать» пациенту.

Очевидные сложные места метода следующие:

  1. Получение модели органа. Нужно где-то взять схему. Это довольно просто.
  2. Получение самих клеток. Очевидно, нам нужен материал для печати органа.
  3. Сборка принтера, чтобы клетками можно было печатать (куча проблем с образованием структуры органа).
  4. Гипоксия (отсутствие кислорода) во время создания органа.
  5. Реализации питания органа и его созревание до готовности.

Итак, 3D-принтер – это только кусок линии по фабрикации органов: его нужно обеспечить чертежом, материалом, а затем полученную модель органа из клеток ещё вырастить. Теперь давайте посмотрим по шагам, как все описанные выше задачи решаются.

Модель органа

Итак, берётся CAD-файл (сейчас — формат stl) с моделью органа. Проще всего получить модель, сделав трёхмерное сканирование самого пациента, а затем доработав данные руками. Сейчас текущие конструкты моделируются в AutoCAD.

3d-organs_03
Видно моделирование. 3D-структура как у обычной детали – только вместо пластика будут тканевые сфероиды.

Материал

Берётся материал – тканевые сфероиды, которыми будет идти запечатка. В качестве основы используется гидрогель, выполняющий функции соединительной структуры. Затем 3D-принтер печатает орган из этих вот тканевых сфероидов.

3d-organs_04
Первый опыт, подтверждающий, что из кусочков можно собрать целый орган: учёные разрезали на фрагменты сердце цыплёнка и срастили заново. Успешно.

Теперь вопрос – где взять клетки для этого материала. Лучшие – человеческие эмбиональные стволовые, из них можно сделать клетки для любой ткани последовательной дифференцировкой. Но их трогать, как мы знаем, нельзя. Зато можно брать iPS – индуцированные плюрипотентные стволовые клетки. Их можно сделать из костного мозга, пульпы зуба или обычной жировой ткани пациента – и их производят различные компании по всему миру.

Схема такая: человек обращается в клинику, делает липосакцию, жировая ткань замораживается и кладётся в репозиторий. При необходимости – достаётся, из неё делаются нужные клетки (ATDSC, один такой комплекс есть в России) и затем дифференцируются по назначению. Например, из фибробластов можно сделать iPS, из них – почечный эпителий, а дальше – функциональный эпителий.

Машины для автоматического получения таких клеток производятся General Electric, например.

3d-organs_05
Центрифуга. Первый этап отделения материала из жировой ткани.

Из этих клеток формируются шарики в специальных микроуглублениях на твёрдом материале. В углубление на молде помещается клеточная суспензия, затем клетки сращиваются, и образуется шарик. Точнее – не очень ровный сфероид.

Обработка конструкционных блоков

Следующая проблема – клетки в картдидже горят желанием срастись. Тканевые сфероиды должны быть изолированы друг от друга, иначе они начнут срастаться раньше срока. Их нужно инкапсулировать, и для этого используется гиалуроновая кислота, получаемая из сыворотки крови. Её надо совсем мало – просто один тончайший слой. Она также быстро «уходит» после печати.

Печать

Головка 3D-принтера имеет три экструдера: две форсунки с гелем и устройство, выдающее тканевые сфероиды. В первой форсунке с гелем – тромбин, во второй – фибриноген. Оба геля относительно стабильны, пока не соприкасаются. Но когда белок фибриноген расщепляется тромбином, образуется фибрин-мономер. Именно им как бетоном скрепляются тканевые сфероиды. При глубине слоя, соответствующей диаметру сфероида, можно последовательно наносить материал ряд за рядом – сделали слой, закрепили, перешли к следующему. Затем фибрин легко деградирует в среде и вымывается при перфузии, и остаётся только нужная ткань.

3d-organs_06
Вот так будут печататься трубочки

Принтер печатает слоями по 250 микрометров: это баланс между оптимальным размером блока и риском гипоксии в сфероиде. За полчаса можно напечатать тканево-инженерную конструкцию 10х10 сантиметров – но это ещё не орган, а тканево-инженерная конструкция, «сопля» на жаргоне. Чтобы конструкция стала органом, она должна жить, иметь чёткую форму, нести функции.

3d-organs_07
Микроскоп с огромным фокусным расстоянием смотрит на стеклянный куб с 3D-принтером. 

3d-organs_08
Печатающая головка. Пока идут тесты комплекса на пластике. Принтер сейчас печатает расходный материал, пластиковые приспособления-молды для создания сфероидов. Параллельно идут тесты стерильного бокса для 3D-принтера при работающем электронном устройстве. 

Постобработка

Главный вопрос – это то, что клеткам, вообще-то, не плохо бы иметь доступ к кислороду и питательным веществам. Иначе они начинают, грубо говоря, гнить. Когда орган тонкий, проблем нет, но уже с пары миллиметров это важно. Правда, у слона, например, есть хрящи до 5 миллиметров – но они вмонтированы там, где создаётся большое давление из-за массы остального слона. Так вот, чтобы напечатанный орган не испортился в процессе фабрикации, нужна микроциркуляция. Это делается печатью настоящих сосудов и капилляров, плюс с помощью тончайших перфузионных отверстий, проделываемых неорганическими инструментами (грубо говоря, конструкционные блоки поступают на полимерном «шампуре», который потом вынимается).

3d-organs_09
Уплотнение ткани

3d-organs_10
Тканевое объединение нескольких типов клеток без смешения

Будущий орган помещается в биореактор. Это, сильно упрощая, банка с контролируемой средой, в которой на входы и выходы органа подаются нужные вещества, плюс обеспечивается ускоренное созревание за счёт воздействия факторами роста.

Вот что интересно — архитектура органа обычно похожа на привычный по ООП инкапсулированный объект – артерия входа, вена выхода – и куча функций внутри. Предполагается, что биореактор позволит обеспечивать нужный вход и выход. Но это пока теория, собрать ещё не удалось ни одного. Но проект отработан до стадии «можно собирать прототип».

3d-organs_11
Висело в лаборатории. Видно первый этап: получение базовых элементов, второй – 3D-принтер с тремя экструдерами, третий – уход от прототипа к промышленной модели, затем испытания на животных, затем выход на IPO и установка людям.

3d-organs_12
Линия целиком — клеточный сортер, фабрикатор тканевых сфероидов, принтер, перфузионная установка

Рынки

Теперь кому всё это нужно на стадии, пока нет самих органов.

Первые же крупные клиенты – военные. Собственно, как не трудно догадаться, DARPA ходит в гости ко всем учёным, занимающимся такой темой. У них два применения – испытательное (много что нельзя испытывать на живых людях, а хочется – отдельный орган был бы очень кстати) и лечебное. Например, бойцу демократии отрывает руку, а до госпиталя ползти сутки. Хорошо бы закрыть дыру, снять боль, дать ему возможность стрелять ещё 5 часов, а затем на своих двоих прийти к медсестре. В теории возможны либо роботы, которые соберут всё это по месту, либо заплатки из человеческих тканей, которые уже сейчас всерьёз думают ставить на ожоги.

Второй клиент – фарма. Там лекарства испытываются по 15 лет до выхода на рынок. Как шутят американцы, проще убить коллегу, чем мышку. На мышку надо собрать кучу документов в руку толщиной. Сертифицированные мышки получаются в результате очень дорогие. Да и результаты по зверьку отличаются от человеческих. Существующие модели испытаний на плоских клеточных моделях и на животных не достаточно ревалентны. В лаборатории мне сказали, что примерно 7% новых лекарственных формул в мире не доходят до клинических испытаний из-за нефротоксичности, выявленной на стадии преклинических испытаний. Из тех, что дошли, около трети имеют проблемы с токсичностью. Именно поэтому, кстати, одна из первых задач — проверка функциональности нефронов, сделанных в лаборатории. Ткани и органы с принтера будут существенно ускорять разработку лекарств, а это огромные деньги.

Третий клиент – госпитали. Рынок трансплантации почек с США, например – 25 миллиардов долларов. Сначала предполагается просто продавать 3D-принтеры в больницы, чтобы пациент мог получить что нужно. Следующий (теоретический) шаг – создание комплексов для печати органов прямо внутри пациента. Дело в том, что миниатюрную печатающую головку внутрь больного доставить часто намного проще, чем крупный орган. Но это ещё пока мечты, хотя нужные роботы существуют.

3d-organs_13
Вот примерно так оно должно работать

Да, здесь есть ещё одна важная тема: параллельно ведутся исследования по управлению тканевыми сфероидами за счёт магнитной левитации. Первые опыты были простые – в ткань засовывались железные «наноопилки», и сфероиды действительно летали как надо в магнином поле и доставлялись по месту. Но страдала дифференцировка. С опилками сложно выполнять нужные функции. Следующий логичный шаг – металл в инкапсулирующем слое. Но ещё круче – микроскафолды с магнитными частицами. Эти скафолды охватывают сфероид и ещё могут выступать в роли каркаса-соединителя, встающего сразу по месту, что даёт огромный простор для оперативной печати органов.

Ссылки

— Компания на Сколково
— Про российскую конференцию по регенеративной медицине, которую делала эта команда

Пачка ссылок на английском, которая рассказывает о постепенном прогрессе:

3d-organs_14
Куча бумаги, которую Миронов изрисовал за время рассказа. Почерк как у врача 🙂

Важные факты

  • Ни один орган, напечатанный на 3D-принтере, ещё не был имплантирован человеку. Зато есть около десятка разных случаев успешной «установки» таких органов в животных.
  • Миронов собрал уже три действующих 3D-биопринтера: 2 в Канаде, одни у себя в Бразилии. Новый в России должен стать лучше всех существующих.
  • При сращивании сфероидов происходит компактизация ткани – например, почку придётся печатать раза в три больше, чем она будет внутри пациента – уже на последней стадии фабрикации она станет нормального размера.
  • Сейчас научились делать базовые вещи, например, трубочки из разных типов ткани. После проверки функциональности клеток можно делать сложные конструкции. Например, из трубочек легко получается нефрон, а из множества нефронов – почка.
  • Роботы нужны. В бронхах, например, 10 порядков ветвления – собирать это руками несколько утомительно, да и пациент не готов ждать тысячи лет. Будущее технологии быстрой печати – микрофлюидные экструдеры, которые делают до 10 тысяч капель в секунду. Вместе с быстрым роботом они могут дать отличный эффект.
  • Напечатанные органы сразу атромбогенные – например, сосуды сразу же выстланы изнутри эндотелием. Это очень крутое преимущество: пациент не рискует, и ему не придётся всю жизнь сидеть на таблетках.
  • Чекпоинты на близлежащую перспективу: патенты в РФ, полностью собранный принтер, статья в Science или Nature. Уже собрана международная команда ученых, в составе которой: доктор биологических наук, кандидат биологических наук, кандидат медицинских наук, доктор Ph.D.
  • Первая почка будет в 2030-м году. Стоить она сначала будет как космос, но с масштабированием технологии – в разы дешевле, чем чужие органы на пересадку сейчас.

Источник: http://habrahabr.ru/company/invitro/blog/194064/
Автор: Сергей Абдульманов

,

No comments yet.

Добавить комментарий